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2.15. PHASE

Phase of an alternating quantity is the fraction of the time period or cycle that
has elapsed since it has last passed from the chosen zero position or origin.

T

e | "Ba\p 372 2m

/2 )
t=0 4—Ti4—hl m

Fig. 2.20

Note that the time is counted from the instant the voltage is zero and becoming
positive. The maximum positive value E_occurs at T/4 second or n/2radians, or we can
say that the phase of maximum positive value is T/4 seconds or /2 radians.

wt
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2.15.1 Phase_angle

’ . - T : s 7 o] as H ]C Of
Phase angle ¢ is equivalent of ‘phasc’ in radins or degree. The phase ang
. : . ; ; o di ¢ e.
the max. value of the given sinusoidal voltage is /2 radians or 90 degre

2.15.2 Phase difference

When two alternating quantities of same frequency have different zero Po‘f‘ts

~they are said to have a phase difference. Phase difference between two altcrnatl_I:g

; quantities is the fractional part of time period through Whlc_h onc a]tﬂ?r_llilllng guantl y

| has advanced over another alternating quantity. Two alternating quantitics arc tn phase

when both pass through their zero value and also attain their maxinnfm \.'al.uc at 'th:]l
same instant. Two alternating quantities are out of phase if they reach their minimum an

maximum values at different times but always have an equal phase angle between them.

2.15.3 Lagging and Leading guantities

" Thé terms lead or lag are used to describe the relative positions in termes of two
sinusoidal alternating quantities that are not in phase. The one that is ahead in time 1s
said to lead while the one behind lags.

e 1 4
e
.; i Y . __l ® }_
',! / = b c
L/ 0 a ‘\\ P )
— o I‘_ ~ ///
— wtor®
k.
2 Fig. 2.21.

2.15.4. Laogoine and leadng wave forms

If the wave forms of two sinusoidal quantities are given, the leading quantity is
that which attains its zero or maximum value first. See fig 2.21
e=E_Sin ot
i=1_ Sin(ot-¢)

2.16 PHASOR REPRESENTATION OF SINUSOIDAL QUANTITIES

A sinusoidal alternating voltage or current may be represented by a line of definite
length rotating in anticlockwise direction at a constant angular velocity (®). Such a
rotating vector is called a phasor. The length of the phasor is taken equal to the maximum

value (on suitable scale) of the alternating quantity and equal to angular velocityof the
alternating quantity. ‘

4

Consider an alternating quantity (current) represented by the equation i = I
Sinot, Take a line OP to represent to scale the maximum value [ . Imagine the line OP
or phasor is rotating in anticlockwise direction at an angular velocity of ® rad/sec about
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the point O, Mceasuring the time from the instant when OP is horizontal, let OP rotate

through an angle (0 = @t) in the anticlockwise direction, The projection of OP on Y axis
is OM. '

9 O B

Fig. 2.22

Hence the projection of the phasor OP on Y axis at any instant gives the value of
current at that instant. Thus when 0 = 90° the projection on Y axis is OP = Im. If we plot
the projections of the phasor on y axis versus its angular position, point by point a
sinusoidal alternating current is generated as shown in figure 2.22. Thus the phasor
represents the sine wave for every instant of time.

2.16.1 Lagging and leading phasors

Consider a sinusoidal voltage wave ¢ and sinusoidal current i of the same
frequency. Suppose the current lags’ the voltage by an angle . The two alternating
quantities may be represented on the same angular velocity @ and the phase difference
¢ between them remains the same at all times

A

B 1 . (_i
E, g A

l i \ 2n
»E : - - >

—>

¢=E_Sinwt
i = Im Sin (@t-¢)

2.16.2 Addition_and Subraction of Phasors

-~
Alternating voltages and currents are phasors. They are treated in the same manner
as forces. Addition or subtraction of alternating voltages or currents may be done by. '

ol
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D ParalleJogram method

This method is used for the addition of two phasors at a time . The phasors are
represented in magnitude and direction by the adjacent sides of a parallelogram.Then
the diagonal of the parallelogram represents the maximum value of the resultant.

B C

2) Method of Components

This method provides a very convenient means to add two or more phasors.
Each phasor is resolved in to horizontal and vertical components. The horizontals are
summed up algebraically to give the resultant horzontal component X. The verticals are
likewise summed up algebraically to give the resultant vertical con ponent Y.

Then resultant = VX* + Y?
Phase angle of resultant tan ¢ = Y/X

2.17 EXAMPLES

1 Find the resultant of the following four emfs and express the answer in a similar form

e, = 30 Sin wt e, = 40Sin (ot + w/4)
e, = 50 Sin (wt - ®/3) e, = 20 Sin (wt + 3/4)
.SDJHU.QD ‘A‘"t
The angle of lag or lead with respect to X axis is represented below )
LW b7
e =0 20 Y v
c; = /4 = 45° 40
e, = ~(/3) = -60° \
e, = 34 = 135° 45°¢ 450
60° 30 X
Fig.2.25 50

Scanned with CamScanner



83
h) vy ¢ ¢ -
Resolving these components along X axis we get.

X components = 30 + 40 Cos 45° + 50 cos 60° - 20 Cos 45°
= 3O+ 2828 +25-14.14=69.14 V

Y components = 0440 Sin 45 - 50 Sin 60 + 20Sin 45°__
= 0+28.28-433+14.14=-0.88V

E=VX:+Y!=V69.14® + 0.88°

=69.15V
tang = -0.88/69.14=-0.01264
d = tan*' (-0.01264) = .74° lagging
= 0.0132 rad
¢ = 69.15 Sin (0t - 0.0132)

2 Two currents represented by

i, =15 Sin (wt + 3) and

i, =25 Sin (wt + 7/4) are fed into common conductor. Find an expression for the
total current in the same form. If the circuit has a resistance of 22 what will be total
energy loss in 10 hrs ?

Solution

Fig. 2.26 R
60° o7 ‘o

The current phasors are shown in fingure:
X components = 15 Cos 60° + 25 Cos 45°

=25.17
Y components = 15 Sin 60° + 25 Sin 45° = 30.66

55

1 =V25.71 +30.66° =39.6A

30.66
tan = 2517 =1.218

¢ =tan' 1.218 = 50,7 ° = 0.884 rad

s 1=139.6 Sin (wt + 0.884)

el
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ma

l 39.6
- 1 - 97,
o

T"’BSA

=28 x2x10x60 x 60
=56.448 x 10* joules

Energy loss = 'Ry

2.13 PHASOR DIAGRAM USING RMS VALUE

Instead of drawing the phasor diagram using maximum values it is a common
practice to draw it using r.m.s. values. This does not alter the phase difference between
the phasors because only the lengths of the phasors are changed. The figures given

below show the phasor diagrams using maximum values and also the r.m.s. values.

Em E
.

Im I

Fig.2.27

Since r.m.s values are more commonly used in a.c. circuits for calculation we
shall use r.m.s. values in all phasor digrams from now on wards,

#3.19 COMPLEX NOTATION

-

The voltage, current and other parameters in an A.C. circuit may be represented

by complex numbers. A complex quantity may be expressed in any of the following

forms

1. Rectangular form or complex form

Consider a vector quazntity E. This can be expressed as

E = x tjy where x and y are real numbers; x is in phase or active component, y

is the quandrature or reactive component and j = V-] is an operator which is an imaginary

number.
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/"f\
27 lE N
/ \
. \
II'LF::-!; E AN
X ’)\-Ahc
\ /
\\
jE= B
\\-¥'//
Fig. 2.28(a) Fig. 2.28(b)
Referring to the figure given

B =a,+jb; ; E,=-a, +jb, ;

The use of the operator ‘j° indicates that component ‘b* is along the j axis or

imaginary axis,
’

The operator j when applied to a phasor E gives the new phasor jE, which is
displaced by 90° in anticlockwise direction from E. The double application of j on phasor
E rotates it through 180° in counter clock wise direction giving j°E = -E Hence j* = -1 or
j= \"I which is an imaginary number. The magnitude of the phasor is unaffected, while

e openalas ol wetale dhe harss

dlsowzth 07 1o comdin cle chuise dibe clion
2. Trigonometric form Withed chomging +he M%Nku&{ & I
phas o2

the direction changes.

E = r(Cos $ £ j Sing)
Where r = VX + y? is called the modulus of E and angle ¢ = tan! y/x is called

the argument of E.

3. Exponential

E = re

4/ Polar form
E=rZct

Let phasor E, be equal to E, = a + jb This may be expressed in polar form as

E, =r £ ¢wherer= Va * +b,* and

¢=tan’' b /a, is its argument.
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2.210 OPERATIONS ON COMPLEX NUMBERS

2.20.1 Sum_and difference of complex numbers

- . . . . . vhose re:
Fhe sum of two complex numbers is defined as the complex munbcr \.h ¢ real
' ‘ ‘hose imagin: ar
partis the sum of the real parts of the two complex numbers and whose imaginary part
18 the sum of the unaginary parts of the two complex numbers. I'hus,
(at3b) + (c+jd) = (ate) + j(b+d)

The difference of two complex numbers is another complex l.mmbcr- whose real
partis the difference of the two real parts and whose imaginary part is the difference of
the two imaginary parts of the two complex numbers. Thus,

(atjb) - (ctjd) = (a-c) + j(b-d)

2.20.2. Product of complex numbers

a) Rectangular form.
(at+jb) (c+jd) = ac + jad + jbc + j*bd
= (ac-bd) + j(ad+bc) Since j* = -1
b) Trigonometric form.

r(Cos¢, +j Sing,) x r,(Cos¢, + j Sing,)
= 1,1, (Cos (§,+0,) +j Sin (§,+ ¢,)
c) Exponential form
rlc el X r.c 162 = rl r: cJ“l“:)
d) Polar Form
rZe, xr, £¢, =r, 1, £+,

2.20.3. Conjugate of a complex number

The conjugate of a complex number A is defined as whose real part is equal to
the real part of A and whose imaginary part is equal to the negative of the imaginary
part of A. The conjugate of A is denoted as A*. Thus if A =a+jb A* = a-jb.

From the figure it is g A
observed that A* is the mirror image of A.

*

A
Figure 2.29
2.20.4. Division of complex numbers

a) Rectangular form
_{atjb) = (atjb) (c-jd) _Aac-jad+jbe-j*hd ¢
(c*)d) (ctjd) (c-jd) c+?
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b) Trigonometric form

T, (Cos ¢, + jSin ¢)) (r, Cosd +jSing,)

87

(Cosd, - jSing,)

r,(Cos¢, + jSing,) r, (Cos¢,*+jSing,)

r| Cos (¢|'¢:) + JSlﬂ (‘bl'd);)
r, (Cos?¢ + Sin?¢)

= rl oy
T[COS((b[‘q)z) #+ .]Sln (¢|'¢2)]

c) Exponential form

l-le . = rl ej(¢|+¢z)

ar s
d) Polar Form

149, AN,

I‘2 A‘b: rz . ’

Note:--

(Cosd, - jSing,)

1. Argument (-¢) indicates that angle is measured in clockwise direction from the

reference axis.

2. The phasor E Z¢in polar form can be converted into rectangular form E = a+jb.

Where a= E Cos¢, b= E Sin¢

3. /Ii/ectangular form is best suited for addition and subtraction of phasor quantities.
4._~Polar form is best suited for multiplication and division of phasor quantities.

2.20.5 COMPLEX NOTATION OF A.C. CIRCUIT PARAMETERS

The voltage, current, impedance etc. may be represented by complex mumbers.

For example, voltage may be represented as VZ a=V(cos o+ j sin o). The
graphical representation of this voltage is a line segment of V units inclined at angle a
to the reference axis. A current I lagging behind.this voltage by an angle would be

represented by 1Z(o-¢) =1 [Cos (a-$)+ j Sin (o-9)].

In a purely resistive circuit, the impedance is represented by a real number. For
inductive reactance the impedance is positive imaginary value and for capacitive
reactance the impedance is negative imaginary value. Therefore impedance Z may be

represented as ‘
7Z = RtjX = Z4£0

v

Where Z =JR2+ X? and O = tan' X/R

SR T T
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7 = R

+iX, orZ2 = R-jXe
i

where X, = ol and Xc - -
1 '1

Example
Construct the phasor diagram and impedance triangle for the v
given
V = 150 sin (5000t + 457)
I = 3 sin (5000t - 15%)
1507
K—
32
Fig2.36
Solubon
150 3
Vo 2= 45 [= = /.15
T s

%%

oltage and current

43.3

v 1502245

Impedance Z =—= ————
ped I 3422415

2.21. ACTHROUGHA PURELY RESISTIVE CIRCUIT

In a circutl containing pure ohmic resistor (ie, noninductive circuit ) only, the
potential difference (or ohmic drop ) between any two points is given by:

V =R

1)

Where v = applied voltage to overcome the ohmic

voltage drop only.

R = ohmic resistance and 1 = instantaneous current,

But for ac circust v = V_Sin 0= V_ Sin ot

From equation (1 ) and ( 11 ), we get

c‘—'ll-(‘—V‘_Sinwi ...... i Seu s Shs ke yate

| = V_ Sin oo
R

Now for Sin @t = |, The value of current 1 is maximum

<

R ! J
.. Y _:R ........................
P I_ sin o
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From equations (1) and (3), it is clear that alternating voltage ¢ and alternating

current tare in phase with each other and hence, both of these can be represented by
the sine wave [see fig. 2.30¢)

R '

s

kv

m Phasor digram in
O R.M.S. value

V = Vm Sin ot
Fig 2.30(a) Fig 2.30 (b)

: T ¥
S Average Power =—3
| a2 v 2
a b\;‘/,/’"c

__—’<
—_—
: -

by

—_p <
—p -
—"-o

Fig 2.30 (c) Fig 2.30 (d)

Dividing Equation (2.10) byJ2 both side, we get

=V IR
mV IR s, (4)
ic V=1IR

2.21:1. Power in a purely resistive circuit

Instantaneous power (p) in any circuit is given by :
Pevi=V Sinotxl Sin o=V 1 Sin‘at
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== ( 1- Cos2an )

V1 V 1

m m

m
4 2

m

(871 2.1 i1 N (5)

Coscqucml_\' power at any instant consists of two parts namely,

1) The constant part V_I_/2 and
N . . V I Cos2wmt
i) The fluctuating part ie, —= “‘2

Since power is a scalar quantity, we have to consider only average power. Now
the average value of the double frequency component
V. I Cos2mt
3 is zero over a complete cycle.

.. Power absorbed P = average of curve p.

V I V I
=17 _ "X m_ =V

2 V2 T2

The power curve for a pure resistive circuit is also shown in fig 2.30d. Notice

that power in pure resistive circuit is positive at all instants, ie. power in a purely resis-

tive AC Circuit is never zero, this means that power is always absorbed in a resistive

circuit and the same is dissipated as heat.

x I Watts = VI watts.
rms .

S

2,22, AC THROUGH PURELY INDUCTIVE CIRCUIT

Consider an ac circuit consisting of a puré inductance(L Henry) only as shown
in fig. 2.21a. Let the applied alternating voltage be given by the equation,

V=V Sin Ot cccoerriiiiiiiiiiiiiiiiniine, (1)
L
"N x
—v—i
i N Y
; 900
e L
v=V Sin ot phasor diagram

Fig 2.31 (a) Fig 2.31 (b)
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V1
V=VmSin wt
in (W -
’ ’/ I=Im Sin (Wt >)
I/’ \\\
hY
o\ 211 T

Fig 2.32

This alternating voltage will cause an alternating current i to flow through the
circuit. Due to the inductance of the coil, a self-induced emf (-Ldi/dt volt) is induced in
the coil which opposes the applied voltage at every instant. As this circuit is purely
inductive, there is no resistance and hence there is no ohmic drop. Thus the applied
voltage has to overcome the self induced emf only at every instant.

a

A\
i

il /////////

14
()

Fig 2.33
di
V,=L —
& dt
[ di
ot = L —e—
VmSm(D T

\%
di= —Iin—Sin ot dt

Integrating both sides we get

i=m jS‘ otdt = v"‘ (-cosmt)
|=—i-:-- n = O)L COS

\% ‘ -
=——Si 00%) i e R 2
= Sin(t-90°) i (2)

For maximum value of current i,

\%
Sinmt-90° =1 ie I = o
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Hence equation (2) becomes

=1 Sin(M-907)  corrierriirneneireee

Consequently equations (1) and (3) gives the voltage, and current flowing ip

i i urely inductiy
purely inductive AC circuit. It is evident from these Fhal currentiinap y e
circuit lags the voltage v by 90°or /2 radians. See fig 2.32.

The quantity @L, which plays the part of resistance, of il'.ldl.lCtor .IS called 12duc.
tive rectance X, and is expressed in ohm, if L is in Henr){ and @is in radlan{ seconds (or
Hertz). in other words inductive reactanc is the opposition offered by the indutance to
the alternating current flow.

2.22.1. wer i rely inductive AC circuit

Instantaneous value of power in pure inductive AC circuit is given by:
p=vi=V_I Sinat Sin(ot - 1/2)

VI
=-V_I_Sinat Cosat = —5— Sin2at

Power for complete cycle is given by :
P= -_vmﬁ <k Valn -Cos 2@t | 2T
-2 OISin20x= 2 - 92 0
me'L +[1-1]
=2 [ 2 1=0

Hence the average power demand (or dissipation) by a pure inductive AC circuit
is zero. However the maximum value of instantaneous power (pisL V. I
m m.

2.23. AC THROUGH PURELY CAPACITIVE CIRCUIT

Consider a capacitor of ca

pcitance C Farads connected to an AC circuit (see fig
2.34a) of voltage

Ve=V_ Sin Ot e ..... (D
! F 900 —>I
—v:
i N Y
. V.
Y th :
v=V_Sin ot pasar dingiam

Fig 234 (a) Fig 2.34 (b)
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V=VmSinwl i=1Im Sin (wt +1)
\Y | 2
91\ /r
2t
ViP
A

Fig 2.34(d)

Then the charge in the capacitor is given by
q=C.V_=C.V _Sinmt
Current i at any instant,

i = Rate of flow of charge = —d';l'

- -7;’7-(c.vmsm o)=CV_Cosat.®

i= (—‘li'LSin T 77 N 2)

/)

The value of current i is maximum when
Sin(ox + W2) =1 ie,

Vm

7
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Consequently, the factor 1/ax which acts as the resistance of the capacitor, i

called capacitive reactance (Xc). Its unit is ohms if C is in farads and @ is in radians/
SO,

From equations (1) and (2) we get,
U= ImSin (004 ®72) o (3

Thus from equations (1) and (3). it is clear that the current i in a purely ca-
pacitive AC circuit leads the applied voltage by 1/2 radians or 90° [See fig 2.34(b) and
2.34 (0))

2.23

-1 Power_ in_a purely capacitive AC circuit

Instantaneous value of power in an AC circuit, containing capacitance only is
given by '

p=vi=V_1_ Sinotsin (Ot + 7/2)
_ V_I_Sin2mt
=V I SinotCoswt= 282

ic. the frequency of sine wave in the expression for power of a purely capaci-
tive AC circuit is double that of emf as well as current waves.

Now total power for the whole cycle is given by:

\

712
P= ,)mm ,]Sin 2wt =0
2 B

Hence the average power demand (or dissipation) in a purely capacitive AC
r circuit is zero. (See Fig. 2.34d.)

: . . V1
However the maximum value of instantaneous Power (p) is —mm

-; 2.24. AC THROUGH SERIES R-L CIRCUIT

et 7

Consider a resistor of R ohms and an inductive coil of inductance L henries
connected in series across an A.C. circuit see Fig 2.35a.

‘ Let V = RMS value of applied voltage

x:l'. I = RMS value of resultant current

{ v, = IR = Voltage drop across R in phase with I

; and V, = IX, = Voltage drop across L at right angles to 1.
i
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R B
—{ YA
V Vi ,
: Y
S5u°
)\ i u >
() 0 v, ZA
3 T
Fig 2.35 (a) | Fig2.35 (b)
. B
Z X,
0! R Al
Fig2.35(c)
v V = Vi Sin wt /
I=im Sin (We- ) Z
P —\/ /% “ s
S \\\ . G 'y ;/4 77 /A Average Power
/- \ 21 ,//, N\ =VICos
o | %z 7222
y Sk =
of 2
— 0

Fig 2.35 (d)

Phasor diagram (see fig. 2.35 b) shows that phasors OA and AB represent the

ohmic drop (V) and the inductive drop (V,) respectively. Consequently, the applied
voltage (V) is the phasor sum of these two.

ie v=Vv2+Vv? = VaRY + 1X)* =T VR + X 2
| v i
I —

VR? + X,? z
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The quantity VR + X,® possessing the unit of ohms, is called impedeance (Z)
of circuit,

V=12,V = [Rand V, =IX,

The triangle OAB (sce fig 2.35b) is called the voltage triangle, while the triangle
O A'B’ (see fig 2.35¢) whose sides represent R. XL and Z is called the impedance
triangle. It can easily be noticed that the phasor V leads the phasor I by an angle ¢ or
current I lags the voltage V by an angle ¢ see fig. 2.35.d)

Such that

X L
tan¢ =—L __Reactance

R =~ R ~ Resistance

X
- N L
0= tan-1 R

wer i ries R-1. Circuit
Let us resolve current I into two mutually perpendicular components (See fig

2.36), 1 Cos¢ along the applied voltage V and I Sind perpendicular (or in quadrature ) to
applied voltage (V). ;
ICosd v

0 <%s > >

|
ISin o :
I

Instantaneeous power p = vi watts
=V_Sinwt x I_ Sin(wt-0)

V_1_[Cos¢ - Cos(2ut-a)]
= 2

Thus we see that the instantaneous power consists of two parts

V_1 Coso
a) A constant part ('—‘—2— and
b) A double frequency component 1/2 V_Im Cos (20t - ®) whose average

value over a complete cycle is zero
Average power P = 1/2 VmIm Cos¢ —7\/31.. L, Coso
R I R

= VI Cos¢ -
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e e Cosd (e cosine of angle by which the current phasor lags the voltage
Fh.’\‘\\f\ % \'.\”l‘\‘ 1‘.\'\\ er (actor ”“»! ot lhf’

ctreuit, thus power factor is the cosine of lag
angle or the ratio of

astance to fmpendance or Cosd = R/Z.

" " :"' W 8 &l R B . » g gt % -
2250 APPARENT POW ERACTIVE POWERAND REACTIVE POWER
1. Apparent Power (8) ;
In an a.¢. circuit the product of rms values of applied voltage and current is
called apparent power,
:\P]‘JH‘“‘ power = \'... |

Apparent power 1s measured in volt ampere (VA) or in Kilovolt ampere (kVA).

1. Active Power (P)

The power actually consumed in an a.c. circuit is called active power or real
power. Tt is measured in watts. If V and I are the rms values of voltage and current
respectively and cos® the power factor of the circuit, then,

Active power P = VI Cos® walli.ooooooivneennn. (1

.

= Apparent power x power factor
. = KVA x Cosd walls,
The unit of active power is watts or kilo watts (kW) /'}

-~

==
[ Cosd is the component of I in phase with applied voltage V (see Fig 2.36), 1
Cos® is known as active or wattfull or power component of current,

Put Cos¢

R/Z in equation(l)

VLR 1Z.IR
We get P= 7 v = I’R watts.

{That 1s the active power in an ac circuit is power consumed in the resistance only. |
3. Reactive Power (Q)

The Component of Lin quadrature with the applied voltage V (ie 1 Sind) is known
as reactive or wattless component of current. The product of rms value of voltage (V)
and rezctive component of current (1 8in®) 1s called the reactive power.

VI Sin® watts,

1]

e, Q

apparent power X Sing.

W

The unit of reactive power is VAR (Volt ampere reactive) or KVAR,

Scanned with CamScanner



Gu

2.26 IMPEDANCE TRIANGLE AND POWER TRIANGLE

The circuit parameters resistance, reactance and impedance can be represented
By the sides of a right angled triangle as shown in fig. 2.37a., This triangle is known as
impesdance triangle of the circuit.

From the impedance triangle. the phase angle ¢ (between applied voltage and
circuit current) is obtained as
R
o= Cos™! zZ

R I
Fig 2.37(a)

Reactive Power

Apparent Power, Q= VISin ¢

0

- Vv
True Power P = VI Cos ¢ >

Fig 2.37(b)

The three powers (apparent power, active power and reactive power) can also
be represented by a right angled triangle called power triangle.

From power triangle,

Active Power
1) pf =
Apparent Power

2) kVA = \/kw: + kVAR?
2.27. A C THROUGH SERIES R.C CIRCUIT

Consider an AC circuit in which a resistor of R ohms and a capacitor of
capacitance C farad are connected in series. (See fig. 2.38a)
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el 90" '
- l
R Y,

C C
I AN
— VR >Il\/ VC —_—
v
=)
—/
Fig.2.38(a)
A"
0 R :_}‘:00 ~ 0 R A
¢ o
-V - Xc
¥ Z
Fig2.38(b) B IMPEDANCE TRIANGLE" B
Fig 2.38 (c¢)
v i i = I_Sin (Ot+®)
V=V,_Sin O
T I /’. “\
l" \‘|‘
l"’" I‘.'.‘
' Ttl2"‘.‘
—pio[e—
Fig 2.38(d)
Let \% = RMS value of applied voltage
1 = RMS value of resultant current
v, = IR = Voltage drop across R in phase with I
And Ve = IXc = Voltage drop across C lagging I by ™2 radians.

Since the capacitive reactance Xc is regarded as negative, Vc is shown along
the negative direction of Y- axis (ie. downwards) in the voltage triangle OAB (See
Fig.2.38b)
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Vi \?RZ 4 \’C: :(IR)Z + (-IXC)’ = |2 (R2 + X(JZ)
V \Y
= ==
Z
VR + X2

Where Z is called the impedance of the circuit. Fig 2.38¢c shows the impedance
triangle OAB in which sides represent R, -Xc and Z. It can easily be noted that current
I leads the voltage V by an angle ¢(See fig 2.38d).

Such that tan ¢ = Xc

R

~.Corresponding instantaneous values of
Voltage, v=V_ Sin t
and current i = I_Sin(wt +¢)

Power In RC series Circuit
Instantaneous power p = vi watts
= (V_Sin wt) I_ Sin(mt+0)
=1/2 V_I_(Cos¢ - Cos (2mt+0))
Average power P =1/2V_I_Cosd

= VI Cos0.

R
= (12)1 (—) = P R waus

2.28. A C THROUGH SERIES RLC CIRCUIT

Consider an AC Circuit containing a resistor of resistance R ohm, an inductor of
inductance L henries and a capacitor of capacitance C farads, all connected in series
across AC supply of RMS voltage V volts and RMS current [ amperes see fig 2.39 (a).

Let V_ =IR = Voltage drop across R in phase
with current I

V, =1IX =1mL = Voltage drop across L.
leading I by /2 radans.

| ,
V.=1Xc =1 " = Voltage drop across C lagging I by n/2 radians
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R R
—_+—V—|
— V, —a‘<—-vL —)levc-—r
IN
()
_/
Vv
VL I
>VR 900
>1
90°
| VC
Fig.2.39 (a)
DA — AT
v X
-
Z XL'XC
U
R
-XC
N AN

Fig 2.39 (b)" Fig 2.39 (c)

In the voltage triangle OAB (See fig 2.39 b)OB, OA and AB represent V,V, and
(V, - V) respectively. It may be noted that V| and Vc are out of phase by ® radians or
180°) wnth each other ie. they are directly in opposmon to each other. in the diagram V

has. been assumed to be greater in magnitude than Vc. Hence the net reactive drop =
AB.

VL = VC = I(XL = XC)

But the applied voltage (V.) represented by OB is vector sum of OA and AB

e, V= VWV, -V = VURY + (X, - IX)?

=1 ‘JRZ + (XL - XC)2
A% A"

\Y%
I= = —
Nr2+ (X, -Xc  VR?+ X2
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where 7 = impedance of the cireuit and
X = net reactance (XL - Xco)
o L= R 4X?

The phase angle ¢ is given by
tand X, - X¢ __X___ Net Reactance
‘ R “ R 7 Resistance

S Voltage and the resulting current are given by

1w IMSINMEED)Y snscmmansadiisns (2)

When current leads (ie Xc > X)), then positive (+) sign is to be used in (2) but when
current lags (ie X, > Xc), then negative sign (-) is to be used in (2)
R
Z AR+ (X - Xc)?

Power consumed, P = Voltage x component of current in
phase with voltage

= VI Cos¢

Power factor = Cosd =

2.29. EXAMPLES

l/- A resistance of 50 Q is connected across a supply voltage v =50 Sin 314 t. Calculate the

- power dissipated in the resistor.
Solution
v = . 50 Sin 314t.
V., = 50
R = 50
I = V /R =50/50 = 1A
Power dissipated = VI watts
\/m [m
=7 N3 watts = (50 x 1)/2 =25 watts,
2 A S0Hz alternating voltage of 220V produces a current of 2.2 ampere in a pure inductance
L0il. Determine:
a) . Inductive reactance of the coil.
b) Inductance of the coil and
c) Power absorbed.

Also write the equation for applied voltage and current.

Scanned with CamScanner



103

Solution

rms value of applied voltage
V =220 VoIt

rms value of current [ = 2.2A
frequency f = 50 Hz

a) Inductive reactance of the coil,

\Y
X = 1 = 2223 - = 100ohm

b) Inductance of the coil

L=X o X _100
® 2nf  2mx50

c) Power absobed P =0
Peak value of current voltage V_=V2 x 220 = 311.13 volt.
Equation for applied voltage is
v=V_Sin(2fnt) = 311.13 Sin 2t x 50 x t)
v=311.13 Sin (314t)volt.
Peak value of current 1_=V2x22=3.11A
equation for current is

i=1_Sin(mt- 7/2)

i =3.11 Sin(27ft - 7/2)

i=3.11 Sin(2m x 50t - ®/2)

i=3.11 Sin(314t - /2) amp.

= 0318 H

3 A capacitance of 40F is supplied with a potential difference of 220 volt(rms).

What must be the frequency, if the current is to be (a) 2.765 amp and (b) 5.53 amp.

Solution _
rms value of potential difference V = 220V
rms value of current I=V/Xc = v
1/ox
I=wC.V=2rnfCV
| - I =_1

T5mVC  2Znx220x40x10° 0.0553
a) When I = 2.765amp

2765 _

b) ~ When I = 5.53 amp 5.53
f e ——

=0.0553 — L00Hz.
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across each element.

Solution

R =300%, L=2.06 H
C=795LF =7.95x 10°F
V=250V, f=50Hz.

Inductive reactance of the circuit
X, = 2L = 21 x 50 x 2.06 = 647£2.
Capacitive reactance of the circuit

1 1
Xc = = = 400€2
¢ 2nfC  2mx50x7.95x 10

Net reactance of the circuit

X=X -Xc

= 647 - 400 = 247X
Since X, > Xc the circuit is predominantly inductive.
Impedance of the circuit -

Z = VR? + (X_ - Xc) = V300 + 2472 = 388.6Q

a) Current in the circuit I = V/Z= 250/388.6 = 0.643 A
b) Cos¢ = R/Z=300/388.6 = 0.772 A
Phase angle ¢ = Cos'(0.772) = 36.46° (lag)
¢) Voltage drop across the resistor
V,=IR = 0.643 x 300 = 1939V
Voltage drop across the inductor
: v, =IX, = 0.643 x 647 = 416V
Voltage drop across the capacitor
Ve =1.Xc = 0.643 x 400 = 2572V
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,A series circuit coﬁsists of a 300Q2 non-irﬁ'uctive resistor, a 7.95 UF capacitor
and a 2.06 H inductor of negligible resistance. If the supply voltage is 250V at
50Hz. calculate (a) the circuit current (b) the phase angle (c) the voltage drop
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Advantages of three phase power over single phase power are )P

TS M AT RS W B AT B RIAYE IRANRE LB Sl A e I
IR THREE PHASE SYSTEM
INTRODUCTION

”“.‘ a.c. circuits discussed so far are termed as single phase circuits because
they contain a single alternating current and voltage wave. A single phase generator
Pr*-‘d“cf“f'-, a single phase supply has only one ,;1r_mauhlrc \\'illdirlzztw;\utii:}; phase generator
producing two phase voltage has two wlindinﬁ”d-i';ﬁlk;{égd—f)y 90" and a three phase
generator has three winding displaced by 120°. In general we can say that a poly
phase system has many phases or circuits, each phase having a single alternating voltage
of equal magnitude and frequency but displaced from one another by equal electrical _

angles. Although several polyphase systems are possible the three phase system is the
most popular one.

4.1.1 Recasons for the use of Three Phase System

Electric power is generated, transmitted and distributed in the form of 3 phase
power. Homes and small establishments have single phase power but this merely
represents a tap-off from the basic three phase system.

-

. » |5
1. For a _given size of frame, a three phase generator or motor has greater output
than that of a single phdse genertor.

. | . . oo
2. Three phase generators work in parallel without any difficulty.
3. Three phase transmission line requires lesser amount of conductor material for

transmitting the same amount of power over a single phase line.

. v .
4. Three phase motors possess uniform torque whereas single phase motors possess
a pulsating torque.

v, )
5. Poly phase induction motors are self starting whereas single phase a.c. motors are
not self starting.

4.1.2 El;mﬁﬂlﬂﬂ-_umgg_nlmﬂ_ﬂllﬁmam

Figure shows an elementary three phase alternator, The three identical coils
A. B. and C are symmetrically placed in such a way lh“‘/H“L&i!tdllssdj“ them are
displaced b)'_,LZ(jf; (elect) from one another. Since the toils are identical and are

subjected to the same rotating field the emf s induced in them will be of same magnitude

and frequency. :

The equations of the three emf s are

. = E_Sin ot

¢ = E Sin (01-120%)
B =

£, = E_Sin (wt-240")

Figure shows the wave diagram of the three emf s and also the phasor diagram.,
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{ H —_— ~ - "/
" - /,_. 120
Fig 4.1 /
(a) (b) / (c)

It can be proved that the sum of the three emfs at any instant is zero.
i ¢ = ¢, +e,+e,

E_[Sin ot + Sin (@t - 120°) + Sin (ot - 240%)]

E_ [Sin ot + 2 Sin (ot - 180°) Cos 60°]

= E_[Sin ot -2 Sin ot Cos 60°] = 0

Referring to the wave diagram the sum of the three emfs at any instant is zero.
For example at the instant P, ordinate PL is positive while the ordinates PN and PH
are negative, If actual measurements are made it will be seen that

PL+(-PN)+(-PH) = 0

3. Since the three windings or coils are identical, E, = E; = E. = E in magnitude
As shown in figured.2 resultant of E, and E is E_and to its magnitude is 2E Cos
60° = E. This resultant is equal and opposite to E.. Hence the resultant of the

rJ

three emfs is zero.

4. Using complex algebra we can again prove that the sum of the three emf s is zero.

Thus taking E_ as reference phasor we have
B, = E[Q° = E +j0
E, = E<-120° = E(-0.5 - j0.866)
E. = E/-240° = E(-0.5 +0.866)
B, +E +E_ = (E +j0) + E(-0.5 - j0.886) + E(-0.5 + j0.866) = 0
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. ‘l lfsf(lq‘quﬂ-ﬂiih/ﬂ‘iﬂﬂﬂgﬁiy the three phases or coils/reach their maximum
o aynstantancous valde is called the_phase sequence or the ‘phase order. Thus n
figure _lhc (,h‘l-cc coils A, B and C are producing Vv(.)-lTl":'ﬁlgcq that arc displaced by 1207
(electrical) ‘l'rom one another, @cl‘crring © the {’Jb"c‘”fo‘rr;la'(fig. 4.3) it is casy to see
that voltage in coil A attains maximum positive value first, next coil B and then coil C.
Hence the phase. sequence is ABC. If the“direction of rotation of the alternator is
reversed, then the order in whizﬁ'ﬁhree phases attain their max positive value would
be ACB. Hence the phase sequence is ACB.) The three phasess may be numbered
(L ‘3) or lettered (A,B,C) or the three phases may be named after the three natural

;oéc;:xrs that is Red R, Yellow Y and blue B. In this case phase sequence is_RYB or

. \
e ‘ =k

' : \‘B

PHASOR VOLTAGES

Fig.4.3

The selection of a phase angle for one voltage in a three-phase system fixes
the angles of all other voltages. In this chapter, an angle of zero will always be
associated with the phasor voltage of line B with respect to line C: VBC=VLIQ-O' It is
shown that the line to -line voltage V isN 3 times the line to neutral voltage. All
ABC sequence voltages in Fig. 4.4.

| ' V= Vi [240%
Var= VL2 \ Voem vf.gfér
Vpc- VLM )

‘ Vea= Vi [120°
Vea = Vi[240° _ N - )
VEAN = (VLVI)® :AN - :‘\;1, l’\\g))[l_mﬂ
- Von ‘(%;{})L:QQ.' V;: ) (Vi[\ﬁm
Vav = (WL =X ‘
C B_ ‘ ' i A |
(a) chhénce ABC - (b) Sequence CBA

Fig. 4.4
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Eﬂ:-}@hus VR\)indiculcs a voltage V between points R and.

w.r.t. Y during its positive half cyclc]

¢4

16()

ation is a very uscfy]

acrt] ol
4.1.4 Double subscript notation; The double ””h"wp;l e Jhase systems._In thi:
ept : , . i v analysis irec phast 2o T ’
concept and may be found advantageous in the analysis of 1 I (. Ehc two

. } , AT Y qee OF CUurrc

notation two letters are placed at the foot of the symbol tml‘j,llﬂ:..,; (s and/he order of
St ) LS . e enrrent exists é oracro
letters indicate the two points hetween whicl voltage or current e ositive half cyclE
. — L T e ‘nt ( ¢ pe > nall cycle

the letters indicates the relative polarity of vOltage of current during P it "L"j
- —g— y with point R being positive

Tioy

-

ie. an = -VYR

Agair(lm. indicates a current I between points R
from R to Y during its positive half cycle.

Advantage of using double subscript not
of the subscripts describe the quantity completely.

4.1.5 Symmetrical and balanced three phase systems

A system is said to be symmetrical when the various voltages E equal in
magnitude and are displaced from one another by equal angle‘g he system is balanced

when the various voltages are equal in magnitude, the variou: currents_are equal in
magnitude and the phase angle are the same for each phase,
4.1.6 Methods of connection of three phase system

Since a voltage is generated in each coil, it may be considered as a source of
voltage. The three coils together constitute a three phase system and each coils is a
phase. Let a load be connected across each phase. The arrangement given in figure
3.27 shows three loads supplied separately from three phases of a generator. The end
of a coil where the current leaves may be called the starting end or simply the start.

and Y and that its direction is

ation is that the subscripts and the order

1A
Start v >
B
\ .
Finish ['ad
ly
Stant % >
Finish é\;
B
Start >
v
|-
hY
Finsh Y
Fig. 4.5
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Hu (‘th'l.' end where the current enters the coil is called the finishing end or simply the
finish. . The ends ab.c are the starting ends while a/,b’.¢/ are the finishing ends. The
arrangement thus shown requires six wires to connect the loads. This is equivalent to
three separate single phase systems. Such a system is called a three phase, six wire
system//'1 hc‘ number of connecting wires may be reduced by the interconnection of the
to I(,’ll‘"d-‘\’_*'ﬂ_‘c{[c_\_léy)c phase a.c. system. There arc two methods of
interconnecting the three phaSes. These are called (1) E}f‘_[l and (2) Delta (A)

connections,

phasc

I ln®c0nncction. similar ends (start or finish) of the three phases are joined
together within the alternator and the three lines are run from the other free ends as
shown in figure (Fig. 4.6a). The common point N may or may not be brought out. If a
neutral conductor is present it is called a three phase four wire system.

E —O R
= TER
N Neutral wire L
) { Brp —0Y
40 B
Fig. 4.6(a)
2 In A connection, dissimilar ends (start or finish) of the phases are joined to form

a closed mesh and the three lines are run from the junction_points as shown in figure
(Fig. 4.6b). In A connection no neutral point exists and hence only a three phase three

wire system can be formed.

5 —OR
WL €,
c i oY
"E,
OB

Fig. 4.6 (b)
4.2 STAR OR WYE CONNECTION

In this method, similar ends of the three phases are joined together to form a

common junction N called(Star)or @eutral poinD The three line conductors are run from
the three free ends and are designated as R,Y and B. The voltage bet;fen any line and VP"

the neutral point ie. voltage across each winding is called phase voltage/while the voltage

between any two lines is called the line voltage.

The currents flowing in the phase are called phase currents and those flowing in 1

the lines are called the line currents. Phase sequence is RYB.
o ‘_____.‘——-—--————' .
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R R
Neutral wire
“
/
b ¢
B B
Fig. 4.7 (a)' i
1g. 4.7 (a) . Fig. 4.7 (b)
4.2.1 ion between line a d phase voltage

1 Figure 4.8 shows a balanced 3 phase Y connected system in which the r.m.s,
v}zla ues of ?hc c.mfs generated in the three phases are Ew Eyyand E . It is clear that
the potential difference between any two line terminals ie the line voltage is the phase

difference between the potential of these terminals w.r.t. neutral pointie

-an B ERN - EYN

Vg = EYN - Eyy

Ve = Egy - Epy

R
y Y R
TERN v
N VRY BR

Y’ Ew )

Epy Y % ey
Vis
s B
Fig. 4.8

Fig. 4.9
Considering lines R and Y the line voltage Vv is equal to the phasor difference of E
and E, .. To subtract E, from E_ reverse the phasor E,\ and find its phasor sum wi?l:
E.x as shown in the phasor diagram. The two phasors E
magnitude and equal to Eph and 60° apart.

v and -E_ - are equal in

Vey = 2Eph Cos 60%2 = 2Eph Cos 309 \
= V3 Eph
/" Similarly Vys =V3Eph .
Vi =V3Eph

Hence in a balanced three phase Y connection
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Line vollai,c = \ﬁ Eph .

—
—— S

All line volla;,c.s are equal in magnitude but displaced by 120 degree from one
another,

Line voltag,cs are 30° )" ahead of their rcqpccuvc phase voltages.

4.2.2 between line and phase currents

In Y connection each line conductor is connected in fgcriesZto a separate phase

as shown in figure 4.10. Therefore current in a line conductor is the same as that in the
phase to which the line conductor is connected

Line current I, = Iph.

IR

~ R
I,

o Y
I

= B

Fig.4.10

Figure 4.11 shows the phasor diagram for a balanced lagging load, the phase angle
being ¢ . ‘Hence in a balansced 3 phase Y connection.

1.
2.
3.

Line current I, = L.
All line,currents are equal in magnitude but displaced by 120° from one another,

The angle between line currents and the correspondmg)me voltages is 309,
if p.f. lslaggmg and ‘- 1f1t§sleadmg ‘

.11.“?

a

Fig. 4.11
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Power

Total power P= 3 x power in each phase
= IxE_,  xI_ x Cosé
r 3
= ‘ "J b 5
R o lr“- Cosd

\Y
For Y connection . = — and 1 = |
PA \r3 ph L
\r
P = 3 x I, x Cosé
p = V3V, 1 Coso

Coso is the power factor and_ is the phase difference between phase voltage

and the phase current.

4.2.3 Points to remember

L

ro

F{S

The three phase voltage [ie. E E‘,\, E;.] are equal in magnitude but displaced
120° from each other. The same is true for line voltages ie. V.. V  and V .
Such a supply system is called balanced supply system.

Line voltage = V3 x phase voltage. Thus Y connection enables us to use two
voltages ie. phase voltage and line voltage.

Line current = Phase current

For a 3 phase 4 wire star connected supply, the current I, in the neutral wire is the
phasor sum of the three line currents. For a balanced load I,=0

The arrowheads alongside currents or voltages indicate their directions when they
are assumed to be positive and not their actual direction at a particular instant. At
no instant will all the three line currents flow in the same direction either outwards

or inwards. This is expected because the three line currents are displaced 120°
from one another. When one is positive, the other two might both be negative or
one positive and one negative. Thus at any instant current flows from the alternator
through one of the lines to the load and returns through the other two lines or else

current flows from the alternator through two lines and returns by means of third.

4.3 DELTA ORMESH CONNECTION

In this method of interconnection the dissimilar ends of the three phase windings

are joined together ie. finishing end of one phase is connected to the starting end of the

other phase and so on, to obtain mesh or delta as shown in figure 3.209.
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Fig.4.12
It may appear as if the three phases are short circuited on themselves. But that
is not the case. The finishing end of one phase is connected to the starting end of the
other phase so that the resultant voltage around the mesh is the phasor sum of the three
phase voltages. Since the three phase voltages are equal in magnitude and displaced

120° from one another, their phasor sum is zero. Therefore no current can flow around
the mesh when the terminals are open '

4.3.1 Relation between line and phase voltages

Since the system is balanced the three phase voltages are equal in magnitude
but displaced by 120° from each other. From Figure 2.31 it is clear that only one phase
winding is included between any pair of lines. Hence in delta connection V.=V .

g P

4.3.2 Relation between line and phase currents

Since the system is balanced, the three phase currents l,o I, and 1 are equal in
magnitude and displaced from each other by 120°% An examination of current shows
that current in any line is equal to the phasor difference of the currents in the two
phasors attached to that line.

Current I, =1, -1, The current in the line is the phasor difference of I,
I, =1, = I,-1, = 21, Cos 60°%2
= 21, Cos 30" = J31

The three line currents 1, 1, and 1, are equal in magnitude each being equal to [3 L,

and IB.

I
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Fig.4.13

Hence in balanced A connection

1. Linecurrent I, = ‘/3_ Iph.

2. All line currents are equal in magnitude but displaced by 120° from one another.

3. Line currents are 30° behind their respective phase currents.

4.4. ADVANTAGES OF STARAND DELTA CONNECTE'D SYSTEMS

In three phase system, the alternators may be star or delta connected. Also
three phase loads may be star or delta connected. Following are the advantages:

4.4.1. Star Connection

1. Instar connection Vph = Vllﬁ_. Since the induced emf in the phase winding of an
alternator is directly proportional to the number of turns, a star connected alternator
will require lesser number of turns than a delta connected alternator for the same
line voltage.

For the same line voltage, a star connected alternator will require lesser amount
of insulation. Due to the above reasons, three phase alternators are generally star
connected.

o

3. With star connection, it is possible to use two-levels of voltages, that is phase
voltage and line voltage.

4. In star connection, neutral point may be earthed. _Earthing of neutral permits the
use of relays.

4.4.2. Delta_Connection
1. This type of connection is most suitable for rotary converters.
2.  Most of the three phase induction motors are delta connected.

3. Three phase loads are generally delta connected. This is because of the flexibility
with which load may be added or removed on a single phase which is more difficult
with three phase star connected load.
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45 EXAMPLES

14. } z\}}alanc_cc_i star connected load of impedance (6+j8) ohms per phase s connected
l»;‘::c\rce phase 230V, 50Hz. supply. Find the line current and power absorbed by each
phase, :
Z:-\ = 6° + 8* = 100
Vv
Voo = — T PRV
V3 V3 -
R 6
COS¢ 2 — = — =06 l.Bg
Z 10
I:h = E& = _—13—3— = |33A
Zn 10
3
I =] = 133A

Power absorbed per phase
= Vph Iph Cos¢,
= 133x133x06 = 1061W

2 The load to a 3 phase supply comprises of three similar coils connected in star.
The line currents are 25 A and kVA and kW inputs are 20 and 11 respectively.
Find (1) the phase and line voltage (2) the kVAr input (3) resistance and reactance

of each coil.

Solution
I, = Iph = 25 A
Apparent power = 20 kVA
kVA = 3xV x1,
)
Y 20x18 .67V

»o T T 3x258

{ = f 27 = 4 r
v, = Y3V, v3x 26 62V

2 kVAr = VEVAT - kW =V 20°- 117 = 16.7 kVAr
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kW
P P L= COoap = —— S
k VA 20
. v, 7
‘/lllh y -_J-L- . k("] - l‘).()x f).
| 49 ¢
ph
R, = ZCosp = 10.68x —H- =5870
20
A '»\/l().(sh"' -5.87 =8.920Q
Caleulate the current flowing in each line and in each phase of a 3 phase delta
connected motor developing an output of 186.5 kW at 2.3 kV ata p.f. of 0.75 and
efficiency 0.85
Solution
a
Outpul 186.5x 108 W
3
Input Output/Efficiency = 186.5 x 108/0.85
= 219.412 kW y
WS T
V3 V, 1, Cos¢ = Input Power 45 0 =W
Lo = Power input/V3 V., Cosd -
= 219412/ V3 x 2300 x 0.75
' = 73.44 A
Iph =1, /3 = 42.4 A
4 Show that the nower conenmed hy theas idantical cinela alaas 1o 1. ,
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